Midpoint Presentation

Pacific Garbage Patch C3

Project Description

Due to trash collecting in the oceans, the team is tasked with creating an autonomous device that can identify, locate, and collect plastic trash. To model a larger scale boat in the ocean, a RC boat will be modified to autonomously collect ping pong balls.

Previous CAD Model

Mohammad Alajmi

Updated CAD Model

Mohammad Alajmi

Design Description

The team created a design to collect ping pong balls autonomously by using multiple subsystems:

- RC boat
- Camera to detect the ball and send data to the boat
- Grabber to scoop the ball into a container on the boat
- Solar cells to keep the batteries charged to run continuously
- Motors for the grabber and rotation of the camera
- Platform above the boat for the cells.

Updates

Grabber

- Shape
- Gears
- Mass Reduction

Cells

- Amount
- Platform

Collection

• Under Platform

Jake Goodman

Updated Grabber Design

Stephen Sauder

Updated Cell Platform

Salman Alotaibi

Analytical Analysis

Camera Choice

Weatherproof

Identification

Grabber Design

Reduced Mass

Larger Projected Area

[1] A. Industries, "TTL Serial JPEG Camera with NTSC Video", *Adafruit.com*, 2019. [Online]. Available: https://www.adafruit.com/product/397. [Accessed: 10- Mar- 2019].

Stephen Sauder

Manufacturing

Grabber

- Shafts/Bevel Gears
- Grabber Version 3

Camera

Mount

Cells

Mounting Platform

Jake Goodman

Release into body of water with ping pong balls

Manually

Automated

Jake Goodman

Schedule

Slightly Behind Schedule

Design Shafts/Gears

Mount Cells and Camera to Platform

Arduino Automation

Gantt Chart

Stephen Sauder

Budget

Spent \$700

Boat - \$400

Solar Panels - \$145

Grabber - \$80

Camera - \$50

Motor - \$25

Resulting balance - \$800

Mohammad Alajmi

$\ensuremath{\mathsf{Q}}\xspace$ and $\ensuremath{\mathsf{A}}\xspace$